Skip to main content

Jose Alonso

William Neal Reynolds Distinguished Professor

University Faculty Scholar

Thomas Hall 2501A

Bio

Our main interest is to understand the molecular circuits plants use to integrate environmental and developmental signals to produce specific responses. Towards this general goal we have been focusing on the identification of the molecular “signal integrators” or “logic gates” involved in the interaction between two plant hormones, ethylene and auxin, in the regulation of root growth. Using a multidisciplinary approach (genetics, molecular biology, genomics, metabolomics, cell biology, etc.), we have uncovered a complex multistep integration process with both spatial and temporal components. Our research has shown that ethylene activates the transcription of auxin biosynthetic genes in the root meristem (root tip) and then auxin is transported upwards to where it sensitizes the cells in the division zone enabling them to properly respond to ethylene. Our more recent findings suggest that translation regulation represents a key aspect of this “sensitizing” mechanism triggered by auxin. In addition, these studies have allowed us to decipher the first complete auxin biosynthetic pathway in plants and we continue to investigate the role of auxin biosynthesis in development. Finally, we combine our interests in basic biology with the development and implementation of new genetic technologies to accelerate discoveries in plant biology. Currently, we are working on three main areas, gene modification in a chromosomal context using recombineering approaches, high-resolution whole-genome analysis of translation using next-generation-sequencing (NGS) -enabled ribosome footprinting, and implementation of metabolic biosensors, specifically a FRET (Fluorescence Resonance Energy Transfer) -based tryptophan biosensor.

View Publications on Google Scholar

Education

Ph.D. Biology and Biochemistry Universitat de Valencia, Spain 1994

B.S. Biochemistry Universitat de Valencia, Spain 1988

Area(s) of Expertise

Hormone signal integration, Translation regulation, Ribosome footprinting, Recombineering

Publications

View all publications